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𝑀𝐼𝐶∗ is Powerful Estimator
Monte Carlo Simulations (N=107) of factorial 
G×E design confirm framework’s utility.

§ Sensitive: Achieves >80% power to detect 
41% increase in expected count.

§ Specific: Nominal Type I error rate (~5%)
§ Accurate: Low bias with mean bias 0.0026 

(IQR: -0.011 to 0.018) for MIC* estimates
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Figure 2. Example MIC* analysis process for group-wise comparison of MIC*.
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Table 1: Resources available for ordinal scoring and MIC* analysis.

Figure 5: Power analysis for ∆𝑀𝐼𝐶∗ vs alternative 
analyses observed across a range of effect sizes.
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1. Stop Summing Scores. Conventional 
analyses of ordinal data are underpowered

2. Translate Scores to Biology. The MIC* 
framework converts ordinal scores into 
intuitive quantitative metric.

3. New Tools Available to Help. We provide 
complete, open-source workflow for 
research

Question: Can spot assays quantify ethanol-
induced peroxide resistance inheritance?

Finding: MIC* reveals majority exhibit an 
intermediate phenotype, while the Grape ×
Vineyard cross exhibited enhanced resistance.

Ex 2: Trait Mapping Take-Home Messages

Figure 4. 𝑀𝐼𝐶∗ for H2O2 resistance of wild yeast 
strains and crosses following ethanol pretreatment 
versus no pretreatment. Error bars represent 95% CI

log!𝑀𝐼𝐶∗

Ex 1: Quantifying G×E
Question: Does deletion of CTT1 abolish salt-
induced peroxide resistance in yeast?

Finding: Yes. Resistance phenotype for salt is 
completely dependent on the gene CTT1. 
∆𝑀𝐼𝐶∗ = 0.09 (95% CI: -0.04 to 0.23 mM H2O2) 

Figure 3. 𝑀𝐼𝐶∗ for H2O2 resistance of Wild Type 
and CTT1∆ mutants following salt pretreatment.3
Error bars represent 95% CI, * denotes p < 0.05.

The Solution

The Challenge

Convert ordinal scores into a quantitative, 
interpretable metric we call 𝑀𝐼𝐶∗.
𝑃 𝑌 ≤ 0 𝑿, 𝑋! = 𝑀𝐼𝐶∗ = 0.5

§ Derived from ordinal regression model
§ Biologically interpretable
§ MIC = Minimum Inhibitory Concentration

§ Complex phenotypes are commonly 
ordinally measured by scoring.

§ Rapid to Collect
§ Difficult to Analyze
§ Testing Assumptions

§ Ordinal Regression
1

§ Powerful
§ Uncommon2

Statistical Framework
Proportional Odds (PO) Model:

logit 𝑃 𝑌% ≤ 𝑗 = 𝛼& − 𝑿%𝜷

The 𝑀𝐼𝐶∗ Metric:

𝑀𝐼𝐶∗ = 𝑔()
𝛼* − ∑𝛽+𝑋+
𝛽, + ∑𝛽,+𝑋+

Group Differences:

∆𝑀𝐼𝐶∗ = 𝑀𝐼𝐶∗- −𝑀𝐼𝐶∗.
∆ log/𝑀𝐼𝐶∗ = log/𝑀𝐼𝐶∗- − log/𝑀𝐼𝐶∗.

Variance Estimation: (𝑔" 𝜃 = 𝑀𝐼𝐶∗")

𝑉 ∆𝑀𝐼𝐶∗ = ∇𝑔" − ∇𝑔# $+ ∇𝑔" − ∇𝑔#

Figure 1. Example  
ordinal phenotype.

All SMART images are licensed under Creative Commons Attribution 4.0 – Share, adapt, and enhance your presentations with the power of open collaboration.
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G×E = Genotype × Environment Interaction 
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